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. 
I. Introduction 

In the following, the numerical solution of the 

dispersion relation for  a magnetized collisionsless plasma 

in the case of the "loss-cone instability", is described. 

Tne solution' is based on the use of certain Cauchy integral 

theorems, combined with the use o f  graphical display tech- 

niques . The numerical results and graphical display in- 
formation were obtained with the use of the Culler On-Line 

2 

Computer System 3 . 

The work reported here is exploratory in nature; 

only a very limited range of  the relevant parameters occur- 

lng in the plasma dispersion relation is studied. Atten- 

tion is focused on establishing the properties of the un- 

stable modes during transition from the Harris-(single- 

resonance)-type instability3 to the multiple-resonance type 
r 

of Rosenbluth and Postb for very short wave lengths. 

secondary aim of the study i s  to provide a further illus- 

tration of the utility of the Cauchy-integral root-finding 

technique. No attempt is made in this preliminary study 

to distinguish between l'convectivel' and "absolute" insta- 

bilities; work on this aspect of the problem is under way. 

A 



- 2 -  

In Sections I1 - V, the general mathematical problem 
and its solution are discussed. In Section VI,the physical 

problem is formulated, 5y6,7y8910 and in Sections VII-IX, 

numerical results are presented. 

11. The General Mathematical Problem 

The direct solution to the mathematical problem of 

finding the complex zeros of the equation 

f ( z )  = 0 (2.1) 

where f ( z )  is a complex (in general, transcendental) 

function of z analytic in the region of interest, has been 

discussed in references 1 and 2. 

ness, we outline briefly the principles on which the solu- 

tion is based, and add a few points of interest not previ- 

ously discussed. In particular, it was assumed in Refs. 1 

and 2 that the zeros of f ( z )  are all simple; that this 

restriction is not necessary will be seen below. 

For the sake of complete- 

The method of solution of (2.1) is based 1 on well- 

known consequences of Cauchyls residue theorem (slightly 

generalized from those given in Ref. 4, for example): 
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where C i s  any simple, closed curve o f  f i n i t e  l eng th  i n  

the z-plane enclosing 

N zeroes Z .  of o rde r  n e  and P po les  Zd of  

o rde r  td 0 

The most familiar vers ions o f  (2.2) are f o r  b = 0 

and b = 1, w i t h  f ( z )  such t h a t  on ly  simple zeros  and poles  

of f ( z )  occur within C: 4 

I n  wr i t i ng  (2.2) or(2.3), (2.4), w e  have assumed t h a t  

f l ( z ) / f ( z )  is  bounded and continuous on C. ( I f  w e  acciden- 

t a l l y  choose a curve which passes through a pole  o r  zero 

of f ( z )  w e  will have found tha t  pole  o r  zero i n  advance!) 

We have also assumed t h a t  f ( z )  has no branch p o i n t s  o r  

e s s e n t i a l  s i n g u l a r i t i e s  within C.  

I n  many cases  o f  in terest ,  w e  know i n  advance t h a t  

f ( 2 )  i s  analytic i n  the region we wish t o  i n v e s t i g a t e .  The 

case f o r  which t h i s  i s  n o t  s o  and f o r  which w e  may wish t o  

f i n d  all the i s o l a t e d  zeros and poles  i n  a given region 

w i l l  b e  discussed i n  a la te r  paper. 



- 4 -  

I f  f ( z )  is a n a l y t i c  i n s i d e  C ( no p o l e s ) ,  e l u a t i o n s  

(2 .2)  s impl i fy  to:  

n 
I n  p a r t i c u l a r ,  i f  we have chosen C so  as t o  conta in  only  

- one zero z1 o f  prev ious ly  unknown o rde r  n1 w e  have, 

from b = 0: 

I i i  y f(& 
c 

and from b = 1: 

Thus, if we can f ind  a curve C surrounding any i s o l a t e d  

zero,  equations (2.6) and (2.7) c o n s t i t u t e  e x p l i c i t  formu- 

las f o r  both t h e  o rde r  and the p o s i t i o n  of that zero.  

T h i s  result implies t h a t  no loss o f  accuracy w i l l  occur 

wi th  t h i s  method when two r o o t s  merge, - - f o r  example, 

under v a r i a t i o n  of parameters I n  f ( 2 ) .  

The problem of  f ind ing  the r o o t s  o f  f ( z )  i n  a region 

where f ( 2 )  I s  a n a l y t i c  thus reduces to:  

1) determining how many zeros  - - and of  what o rde r  - - 
a r e  within any i n i t i a l l y  chosen curve C,  and 
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, 
2)  j u d i c i a l l y  varying C by  t r a n s l a t i n g  i t ,  shr inking  

i t  o r  changing Its shape so as t o  i s o l a t e  a given 

zero.  

When t h i s  i s  accomplished (2.6) and (2.7) provide the ex- 

p l i c i t  answer t o  the problem. 

oedure are discussed i n  Sect ion I V .  

Some v a r i a t i o n s  o f  t h i s  pro- 

111. Choice and Variat ion of  the  Arc C 

As a p r a c t i c a l  matter, i t  i s  s u f f i c i e n t  t o  assume a t  

t h e  beginning of the  i n v e s t i g a t i o n  tha t  one i s  dea l ing  w i t h  

s i m p l e  zeros only.  T h i s  i s  because I n  n e a r l y  a l l  cases  of  

i n t e r e s t  f ( z )  w i l l  a l s o  depend on one o r  more parameters, A ,  

By .., and mul t ip l e  zeros w i l l  occur only f o r  s p e c i a l  values  

of these parameters. One must begin w i t h  some i n i t i a l  values  

of  A ,  B, .., and i f  multiple zeros  occur a t  t h e  beginning of  

the problem, one w i l l  recognize t h i s  readi ly  enough (see below) 

and simply choose new values o f  A ,  By ... 
termine the location of mult iple  zeros  by observing the merging 

of simple r o o t s  as A, By .., are var ied.  The Importance o f  

(2.6) and (2.7) i s  t o  show tha t  no loss of  accuracy need be 

expected i f  merging occurs . 

One can then de- 

The u t i l i t y  of  t h e  method suggested i n  R e f .  1 has been 

i l l u s t r a t e d  convincingly i n  R e f .  2, using the Cu l l e r  On-Line 

Computing System . With t h i s  system, having chosen a curve 

C ,  one may immediately d isp lay  i t s  map, f ( C ) ,  

3 
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t n  t he  w = f ( z )  plane.  

"Nyquist diagram" f o r  the curve C .  With the  i n i t i a l  

assumption, j u s t i f i e d  from a p r a c t i c a l  s tandpoin t  above, 

t h a t  f ( 2 )  has only  simple zeros wi th in  C ,  one can 

determine by inspec t ion  how many such zeros  occur (observa- 

t i o n  o f  t h e  winding number). T h i s  i s  t h e  same information, 

o f  course,  as tha t  i n  (2.5) f o r  b = 0. 

play o f  f ( C )  has the  further advantage t h a t  w i t h  a l i t t l e  

experience one can u s u a l l y  judge approximately where the  

zeros  l i e  r e l a t i v e  t o  C and thus  decide r e a d i l y  how best 

T h i s  d i s p l a y  i s  tantamount t o  a 

However, the  d i s -  

t o  

of  

o f  

vary C so as t o  i s o l a t e  a p a r t i c u l a r  zero.  The value 

the zero i s  then obtained from I1 ( C ) ,  w i t h i n  t he  accuracy 

the numerical i n t e g r a t i o n  of  z d ( l n  f ) /dz .  

Since the  b a s i s  of t h i s  root-f inding technique I s  

d i r e c t  and exact, the  a c t u a l  numerical accuracy i s  l i m i t e d  

by: 

1) How many d i s t i n c t  p o i n t s  can be used on the  

computer t o  r ep resen t  the curve C i n  t h e  z-plane 

and how far apart the r e s u l t i n g  po in t s  represent- 

ing  f ( C )  i n  the  w = f ( z )  plane are; 

The numerical  technique f o r  d i f f e r e n t l a t i o n  of  

f (z) o r  I n  f ( z ) ;  and 

The numerical technique f o r  I n t e g r a t i o n  over  the  

curve C. 

2) 

3 )  
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Assessment and refinement of  this accuracy is discussed in 

Section V. 

IV. Multiple Roots and Contours Enclosing More Than One Root 

It is not always possible to recognize the existence 

of multiple zeros within C simply by inspection of f (C). 

However, If multiple zeros are in fact present for a given 

set of parameters, the basic procedure o f  varying C so as 

to try to isolate single zeros (reduce the winding number) 

will perforce reveal their existence. 

On the other hand, it may often be more economical 

to compute one or two additional integrals, I2 (C), I3 (C), 

..., for a given - C than to vary C and recompute f (C). 
this case, one can develop useful rules to detect the 

presence of multiple zeros. 

In 

As an example, suppose the winding number for a given 

c l a  2: 

Io ( c )  = 2 (4.1) 

In this case, i f  the curve C encloses a double zero, then 

On the other hand, if C encloses two simple zeros, z1 and 
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I n  t h e  same s p i r i t ,  i t  i s  sometimes convenient t o  work 

w i t h  a contour C which e n c i r c l e s  two s imple  r o o t s  o r  one s i m -  

p l e  roo t  and one f i r s t - o r d e r  pole,  rather than  a l t e r i n g  C 

t o  make i t  enclose only a s i n g l e  roo t .  I n  that  case  w e  

compute t h e  two i n t e g r a l s  I and I 

t h i s  being o f t e n  a small f r a c t i o n  of t h a t  required t o  com- 

pute f ( C )  f o r  a given C). If C encloses  two simple roo t s ,  

Ed 
diagram o r  by f ind ing  that  Io = 2), t he i r  values  are given 

by  

( t h e  computing time f o r  
1 2 

and zg( as evidenced by v i s u a l  i n spec t ion  of the  Nyquist 

(4.4) 

I f  C encloses one f i r s t - o r d e r  pole  and one s imple  roo t ,  the  

value of  the l a t t e r  i s  

We note a l s o ,  that  the  a n a l y t i c  s t r u c t u r e  of f I s  o f t e n  

such that  t h e  l o c a t i o n  of  Its poles  i s  known exactly. 

p l e s  of t h i s  are given i n  s e c t i o n s  V I 1  and VIII). 

case,  C may enclose one o r  two r o o t s  plus s e v e r a l  such known 

poles  without causing any d i f f i c u l t y .  For example, if C 

encloses  a simple roo t  and m known poles  

then i n  place of  (4 .5)  w e  have f o r  the roo t  simply 

(Exam- 

I n  that  

' p i  1 % P I  4 0 8  +rn 
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I f  C enc loses  two simple roots and m known poles ,  the former 

are given by (4 .4)  with I1 replaced by II + 2 3 
I2 replaced by I2 + 2 ( Zpi l2 

i?! 
and 

PI m z=i 

i -1  
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V. Refinement of  Accuracy and Convergence 

It was pointed out  i n  R e f .  2 t ha t  the  present  roo t -  

f i nd ing  method allows refinement of t he  numerical value of  

any roo t  t o  e s s e n t i a l l y  any accuracy cons i s t en t  w i t h  the 

d i g i t a l  capac i ty  of  the computer and that  the "convergence" 

i s  q u i t e  rap id .  The procedure is i l lust rated I n  R e f .  2 

and a l s o  i n  t h i s  r e p o r t  (Sec t ion  VIII). The method re- 

quires, however, the  shr inking  of the contour t o  suc- 

ces s ive ly  smaller c i r c l e s  w i t h  their  c e n t e r s  a t  the previ -  

ous ly  obtained approximate l o c a t i o n  of  t h e  zero.  Any 

subsequent v a r i a t i o n  of the parameters A ,  B, ..., of  f ( z )  

u s u a l l y  then causes t h e  roo t  t o  move r a p i d l y  out  of  t h e  

small contour so chosen. A new contour must then be  con- 

structed and f (C/A, B, ...) recomputed. 

Evident ly  i n  p r a c t i c e  a compromise procedure would 

o f t e n  be desirable whereby one could estimate i n  advance 

the accuracy of  I1 (e )  f o r  a given C which I s  s t i l l  large 

enough t o  allow s i g n i f i c a n t  movement of the roo t  i n s i d e  C 

under va r i a t ion  o f  t he  parameters. I f  t h i s  accuracy is 

deemed s u f f i c i e n t  one can proceed wi th  confidence t o  ob- 

t a i n  a por t ion  of the approximate locus  of  t h e  given roo t  

as the parameters A, B, ..., are var ied ,  i .e. that por t ion  

o f  the locus w i t h i n  c .  

P 

A 
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I .  

I .  

4 For t h i s  purpose, the  i n t e g r a l  Io ( C ) ,  l e e . ,  the 
A 

winding number of  f ( C )  i n  the w = f ( z) plane, has an 

addi t iona l  p r a c t i c a l  use. Since C encloses  one simple 

zero, one knows that  the exact  value of  Io ( C )  must be 

1 + i 0. 

from the in t eg ra t ion  compared w i t h  the known true value 

then gives , in  most cases, a fair  estimate of t he  numeri- 

cal accuracy of I~ ( C )  . 

A 

A 

The actual numerical value Io ( 6 )  obtained 

4 

If the  accuracy appears on th i s  basis t o  be  suf-  

f i c i e n t ,  one may decide t o  proceed t o  vary A, B, .... 
wlth C held fixed. 

however, we can first t ry  t o  improve t h e  accuracy by 

keeping C r e l a t i v e l y  large b u t  rearranging it more sym- 

metrically with respec t  t o  t he  known approximate pos i t i on  

o f  the root  o r  by some other rearrangement. 

quent calculations o f  t h e  roo t ,  as A, B, ..., are varied,  

one can continually monitor I, ( 8 )  t o  obtain an idea o f  

the accuracy involved. Thus, although the accuracy of  

Io ( C )  is  by no means an absolu te  measure of t h e  accuracy 

of I1 ( C ) ,  it can be a u s e f u l  guide. Any remaining doubt 

a s  t o  the a c t u a l  accuracy can always be  c l a r i f i e d  by re- 

f in ing  any given root  by t h e  method of  R e f .  2. 

A 
I f  the  accuracy appears i n s u f f i c i e n t ,  

I n  subse- 

A 

A 

VI. Physical Problem 

Ye are interested in dete-mining the a c t i ~ a l  values nf 
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growth rates and frequencies occuring in the so-called 

"loss-cone instability" of a magnetized collisionsless 

plasma. Roughly, the "loss-cone instability" refers to 

a situation where the distribution of electron and ion 

energies perpendicular to the magnetic field has a 

maximum away from zero. 

The Harris dispersion relation5 has been analyzed 
6 for this case by Rosenbluth and Post 

and Harris' and Guest and Dory8. 

and by Dory, Guest 

In particular, Rosen- 

bluth and Post analyzed the problem in a very general way 

under certain fairly extreme approximations". We wish 

to investigate numerically the meaning of their approxima- 

tions, and try to establish the nature of the transition 

into the regime where their approximations apply. 

We take as our steady-state distribution functions 

j = ions, electrons 

where the and are proportional to the mean 

particle speeds parallel and Perpendicular to the magnetic 

field. 

"J d 

Such distributions represent an extreme case of 
the ')loss-cone instability" . 7 
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We assume dis turbances of  t h i s  s teady  s ta te  of the type 
- icuto We use  the no ta t ion  k I I  - k B/ I 1 where - Ik 

t x e  - 
B i s  the magnetic f i e l d ,  and k f k - kI I  - B / /E/. We a l s o  -I - - 
def ine  8 such t h a t  

Following Rosenbluth and Post,  we assume that the 

wave lengths  and frequencies  of  I n t e r e s t  are such that  

where ace is  t h e  electron cyclo t ron  frequency, eB/me . 
Under these condi t ions,  we can neglec t  e l e c t r o n  Landau damp- 

i n g  and the higher electron cyclo t ron  harmonics. The Harris 

d ispers ion  r e l a t i o n  then reduces t o  

9 where 2 (w) is  t h e  plasma d i spe r s ion  func t ion  

o 

have introduced the following parameters: 

is the ion  plasma frequency (llc.e2/&: m;)” , and we 
P i  



In (6.3), the ion term, (the sum on the right) is still 

exact for the distributions (6.1). Equation (6.3) is to 

be compared with Equation (4) of Rosenbluth and Post, in 
which they have drastically reduced the ion term by fur- 

ther approximations. l.* 

ther approximations numerically. 

6 

We wish to investigate these fur- 

Rosenbluth and Post showed that roots of their 

approximate version of ( 6 . 3 )  are to be found for real $ 

in the region defined by 

i.e. f o r  propagation nearly perpendicular to B, with 

properties such that (k - real) 
- 

L c'c ; 
d cw .Li 

2 -  = z  - c 
Jm - (2)  - "3~; 

-# U.L ; 
"pi A < X L  ; 

(6.7) 

It follows that isin e!- >> 1. 
bluth-Post approximation corresponds to taking a particular 

limit of (6.3) in which i B l + O  - in the ion term. lo 

In fact, formally, the Rosen- 
T C  

Thus, 
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Rosenbluth and Post predict  growth rates >) (oc f o r  real - k . 
I f  r o o t s  of (6.3) a re  indeed t o  be  found i n  t h e  regions 

defined by (6.6) and (6.7) and I f  Ti 

may make the replacements f o r  each n 

I s  not  too large, we 

based on the asymptotic forms9 f o r  large Iwl of  Z (w) and 

Z t  ( w )  . To b e  precise, we can make these replacements 

f o r  each n I n  the sum In (6.3) ao long as 

. >> 1. 4% (2) 
i u s  a/  q y z  (6.10) 

U s e  of (6.8) and (6.9) I s  equivalent  t o  the  neglec t  of 

ion Landau damping. With (6.8) and (6 .9) ,  Equation (6.3) 
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& 

where 6 . r  - 8 , and the l as t  approximation follows for 2 
the range o f  angles  def ined by (6.6). It i s  t h i s  las t  

vers ion  of t h e  d ispers ion  r e l a t i o n  which we study i n  the 

following. 

VI1 . Numerical Analysis 

A s  a l ready  noted, the a n a l y s i s  of  Rosenbluth and Post 

implies  r L r :  e/, ;Y >) 1 . I n  t he  following, w e  

i n v e s t i g a t e  the r o o t s  of (6.11) for  
c 2, 

Actually,  i n  order  t o  f ind  an i n s t a b i l i t y  involv ing  

h te rad ; ion  with seve ra l  ion  cyclotron harmonics, one requires 

Z, 4 i u J e / & &  
However, the  range chosen should i l lus t ra te  the beginning 

of t r a n s i t i o n  t o  the  regime of m u l t i p l e  resonance. I n  

the following, we a l s o  choose 

, which is  not  satisfied by  any o f  (7.1). 

0 i . ~ C c 8  

0 5  Ff5 1 

where 

Rosenbluth and Post assumed E .% 1) F,- 1 (see r e l a t i o n s  
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(6.6) and (6.7) above).  

With the dse of  the parameters E and F, our results 

are v a l i d  f o r  any s u f f i c i e n t l y  s m a l l  value of 6 ;  f o r  any 

value of  2, , however, there i s  a minimum meaningflrl value 

o f  E which depends on 6 1 E m  in = Sh2. 
Our problem reduces t o  tha t  o f  f ind ing  the s o l u t i o n s  t o  

As we are i n t e r e s t e d  i n  i n s t a b i l i t i e s  and the i r  growth 

rates, we need only study G ( z )  i n  the upper half z-plane. 

Clearly G ( z )  i s  a n a l y t i c  there; i t  has poles  symmetrical- 

l y  disposed along t h e  real z axis with spacing zc .  

poles ,  of course,  are the r e s u l t  o f  our  approximations 

These 
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(6.8), (6.9). The actual dispersion function has no 

poles on the real z axis unless cos8= 0. 

Although our primary interest is  in seeking roots with 

Im (z) > zc, Re ( z ) >  zc, with E 2 >  0 , we note that 
(7.6) also has solutions with Re (z) = 0 for perpendicular 

propagation 7 Dory, Guest, and Harris point out that these 

solutions occur in the bands 2.40 5 X S 3.83, 5.52 I X S 

7.02, 8.65 5 X 5 10.17, etc., 1.e. in the regions where 

2 & ( X )  J - , / (A)>~.  In the following, we shall determine 

the values of Im (z) (growth rates) of these "zero-frequen- 

cy" instabilities for x = 3 as a function of E. 

The sum in (7.6) converges more and more slowly as 
x increases. For x = 5 approximately 8 terms are needed 
for satisfactory accuracy (1 part in 10 6 1; for x = XO, 18 

terms are required. Since the latter case is the most 

challenging numerically and corresponds most closely to 

the Rosenbluth-Post analysis, we reserve illustration of 

the root-finding method for the caseSx = 1091O.In the 

following sub-sections, however, we give a few results 

for x = 3 and x = 5. 



- 19 - 

VII. A .  x = 3 

For t h i s  case, x I s  too  small t o  g ive  especially 

i n t e r e s t i n g  results f o r  the higher-frequency i n s t a b i l i t y .  

Hence, we confine our a t t e n t i o n  here t o  determining the 

growth rates f o r  the "zero-frequency" I n s t a b i l i t y  of  Dory, 
Guest and Harris. 7 

Thus, we put F = 0 In G (2) f o r  x = 3, (zc = 1/,3 ) . 
If 0 i E 5 Ecr i t ,  where 

Ecri t  = zx Ji [ x )  & ' (x )  

= -5290375 (x  = 3 )  

a simple zero of 0 (2) with R e  ( 2 )  = 0, I m  (z)> 0 appears. 

Using the method described i n  sec t ions  11, 111, and V the 

values of  I m  (2) were determined as a funct ion of E. The 

results are shown In F i g .  1 and Table  1, 

Regarding the higher-frequency i n s t a b i l i t y  f o r  x = 3 

(Re ( z ) G 1 . 2  z c ) ,  we found 

Clearly, f o r  x = 3, we are quite far from the Rosenbluth- 

Post regime. 

Im ( z )  < zc by the same method. 

Notice that  the minimum meaningful value of  E is  

9 s = .OOJ+~ f o r  zit,= p3,  J = c m 7 j - i .  The values of 
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corresponding $i'% 

and t h e  corresponding 

t o  each value of E are given by 

values  of  0 /(uce by 
Pe 

T a b l e  1. Values of Im ( z )  f o r  t h e  "zero-frequency'' in -  

s t a b i l i t y  of Reference 7 for x = 3 as a func t ion  of E = 

k,& /'-.$, + J f C  The growth rate a t  E = .O5 cor- 

responds t o  I m  ((u) = .737uC, . 
'4 _- -2 

= .52904. X :A$ . ' I I, /Le; - 
Ecr i t  if, 
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F i g .  1.  

VII. B. 

In 

appear . 

Plot of I m  (z) vs.  E corresponding t o  Table 1. 

x = 3. F = 0. The minimum meaningful value 

o f  E i s  .0049 for Z ,  = 9’ =-- (183?)-‘ 
J 

0 

x = 5  

t h i s  case the R e  (z) = 0 I n s t a b i l i t y  does not 

To determine approximately where the higher-fre- 

quency I n s t a b i l i t y  appears, w e  first compute 0 ( 2 )  f o r  

real pos i t ive  z with F = 0 and E = 0. The result i s  sho 

In F i g .  2. 

wn 
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z between 0.2 and 0.4. T h i s  minimum G ( =  1.3738) d e f i n e s  

f o r  x = 5, F = 0. E c r i t  

Equation (7.6) can be  w r i t t e n  f o r  F = 0, E > 0 

Real s o l u t i o n s  of t h i s  equat ion f o r  any E >  0 are thus 

obtained s imply  by drawing a h o r i z o n t a l  s t r a i g h t  l i n e  a 

d i s t a n c e  E above the  axis i n  Fig.  2. As E is reduced be- 

low the  c r i t i c a l  value 1.3738 given by the minimum of  G 

between 0.2 and 0.4, two real r o o t s  disappear.  We expect 

these t o  b e  replaced by two complex conjugate  r o o t s .  Hence 

a r o o t  should appear i n  the upper ha l f  p lane  with 0.2 5 

R e  ( z )  i 0.4 if E ,6' Ecrit. 

The a c t u a l  va lues  o f  t h i s  uns t ab le  r o o t  were found by 

the methods of  s e c t i o n s  11, I11 and V. Results are given 

f o r  F = 0 (0 = 7r/2) over  a range o f  va lues  of E i n  Tab le  2. 

Results f o r  E = 0.6 over  a range of va lues  of F are given 

I n  Tab le  3. 

1.2 

t 
0.6 

1 
0 

E 

Table 2. (Caption on next  page).  
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Table 2. Real and Imaginary values  o f  the high 

frequency roo t  as a func t ion  o f  E f o r  x = 5 and 

perpendicular  propagation (€=o) .  The real parts 

are given i n  the l e f t  column, the imaginary parts 

i n  the r igh t  column, The minimum meaningful value 
of E f o r  x = 5, (q:  J 5 )  is;:&S=.u/.34 i f  d =  0 f . i )  - i  

The growth rate a t  :: = 0,l corresponds t o  

~ 778 {.Of’ w i t h  

ponding value of ?;is /.5,Yk! 1 (Equation (7.a.2) 

1r7c CAY)= 
h!c ((dl = / , ~ y % ~ ,  and the  corres-  

C G  

Table 3. Real and imaginary p a r t s  of  the high fre- 

quency roo t  as a function o f  angle  o f  propagation 

( t; !$A, - ) fo r  x = 5 and E = 0.6. The para- 

meter F = E‘/’& i nc reases  upwards i n  t he  table: 

F = 0, .l, -15, .2 (-1) 1.0 . (F = 0.6 is repeated 

i n  the tab le) .  

1 .  

c 

R e s u l t s  are accura t e  within about 
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1%; :he roots were not "refined" by the inethod of Ref. 2 

since t h i s  assuracy setmed suff ic ient .  Tlie maximum growth 

rate 3bserved 

The root locus  display is  superposd on the table .  

(F = 0.6)  cor rcspnds  to  Im ( w )  = .9gWci. 

~ - - - - - -- 

We see that also for x = 5 the growth rates remain ,< Uc; . 
A s  expected, t ransi t ion to the  Rosenbluth-Post regime has not 

been reached. 
- 

On t h e  other hand, i f  2 1, \ Co5@ 1 J fwe have typical ly  

(7.b.2) 

which is  sufficient '  to allow use of the  replacements (6.8) and 

Because the numerator in the  expression for G ( z ) ,  hA. (7.61, 

2 increases as n JnJn', it is  necessary to include large values of 

n when x i s  large. A more rapidly convergent form is  obtained 

by a simple "subtraction" procedure: 
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where 
K = J J '  
0 0 0  

Kn = 2JnJn' n > , l  

The numerator now goes as 

2 n . 
JnJn', an improvement by a factor of 

In our calculations,  we found that truncating the  series for 

G 

Tables of Kn and Ln values i n  the  appendix. 

VII1.A Critical Values of E 

a t  n = 1 5  gave qui te  adequate accuracy, as is  clear fmm the  

-- 

For preliminary orientation, as with x = 5,  we cmpute G(z) 

for real posit ive z .  The resu l t  i s  shown i n  Figs. 3-6. There are 

t m  r e l a t ive  minima i n  G(z) for 

second for 0.6(z<0.7. 

z>O, one for 0.3(z<0.4 and a 

These minim correspond t o  a sign change i n  

Lr,(x) from p s i t i v e  to  negative as R i s  increased t o  n t 1. It 

is  easy t o  check that t h i s  occurs only twice for x=10 (Appendix I). 

Figs. 4-6 show these minima more clearly: min [G(z)l = 4.8625 for 

0.3tX0.4 and min CG(z>l = 7.6798 for 0.6(z(0.7. (The method for 

obtaining these values with the On-Line System is discussed i n  

Refs. 2 and 3 ) .  

The minimum values of G(z)  given above determine the  

critical values of E = for the  appearance of 

t m  unstable mots with real' frequencies R e  (to)," 3 .  5wci and 

Re (a)= 6 . 2 ~ ~ ~ '  respectively, when cos 8 = 0 .  
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Fig.3 Display of  G ( z )  f o r  x = 10 and p o s i t i v e  real  z 
between 0and;E . Two r e l a t i v e  minima occur, 
between 0.3 and 0.4 and between 0.6 and 0.7. 

FIg.4 Display of G ( z )  for x = 10 and p o s i t i v e  real z 
between 0 and.5. The r e l a t i v e  minimum between 
0.3 and 0.4 is  seen more clearly. 
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Fiqs. and <. The r e l a t i v e  m i n i m u m  values o f  G ( 2 )  
between 3.3 and C.4 and between c.6 and 0.7, 
-vsnect:ve?.y. 

--- 

In  addi t ion  to  t h e  tm unstable  roots with pos i t i ve  Re(z) 

thus  i d e n t i f i e u ,  t h e r e  e x i s t s  a t h i r d  uns tab le  mot for 

at  zero frequency ( R e ( w )  = 0) . The crit ical  value of E for 

cos 8 = 0 

7 

7 t h i s  mot is  

( 8  .a . l> 

Thus, for cos 8 = 0 ,  t h e r e  are (Re(z) 5 0) :  

3 unstable m t s  0 < E < 0.2126 

2 unstable mots 0.2126g E < 4.8625 

1 unstable root 4 . 8 6 2 5 s  E < 7.6798 

0 uns tab le  roots E >/ 7.6798 

As cos 8 is  increased f r o m  zero, t h e  critical values  of E are 

increased because of the F/ t"  term in G ( z )  . O f  course,  s ince  

G ( z )  i s  symmetric i n  

Re  (2) have t h e i r  images i n  tw f u r t h e r  uns tab le  mots with negat ive 

R e  (2) having t h e  same growth rates. 

Re ( z > , t h e  uns tab le  roots with pos i t i ve  
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VI11 B. The Rosenbluth-Post Libnit 

Since the "largest" of t he  unstable mots :trikes the real 

axis  at z/zc= 6 ,  we might expect the  mot values t o  be given approxi- 

mately by the  Rosenbluth-Post dispersion equation provided Imz t u r n s  

out to be camparable t o  

fm (8.2) by use of the Bessel function i d e n t i 3  

Rez. The R-P dispersion equation is  obtained 

This allows us t o  convert the  sum i n  (8 .2 )  t o  an in t eg ra l  (following 

essentially the method used by Rosenbluth 1 0  1: 

3, c 2 S'n ( t r t / r ) I  
( 8 . 3 )  

While ( 8 . 3 )  and (8 .2 )  are exactly equivalent, w e  can now introduce 

the assumption that Im ( z / zc>  >X, in which case the  5 in (3 e k I 2  

in ( 8 . 3 )  can be replaced by 

evaluated analyt ical ly .  The result is 

2 t , k  12 allowing the integral  t o  be 

The sign of (8.4) is of crucial importance and can be checked by 

verifying, d i r ec t ly  fm (8 .21,  that G ( z )  + + l/z as IzI+ -. 
Thus, the  square mot in (8.4) is to be taken as the branch f o r  

2 

+ 1  as z +-. which (1 - t TL)1/2 

The R-P dispersion re la t ion  with our special choice (6.1) f o r  the 

dis t r ibut ion functions is thus 

it To find the mots of (8.51, W is convenient t o  define 
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-‘I ‘L t = - ( I -  q 
(8.6) 

Then (8.5) takes the form 

E = [ t 2 - \ ) c F - t 3 ) / t ’  f Dct)  
(8.7) 

The zems of D l i e  at t = 51 and at the three cube roots of p 

(these latter three coalescing to a s ingle  root at  t = 0 when 

F = 0.) By examining a plot of vs  t for  real t (Fig. 71, 

we see that: 

a)  The root which goes t o  t=&\ ) fo r  E = 0 remains real and 

less than -1 for  a l l  E. The inverse of (8.61, 

t -  \-  
gives z real fo r  this branch 

Tw 2 ,> & required for t he  

is of no further in te res t .  

t - T  (8.8) 

so it cannot s a t i s fy  the condition 

va l id i ty  of (8.5). Hence this branch 

b) For O( F 4  \ , the roots a t  & =  ’\J\F\ and t = 1 mve  to&s 

each other  along the r e a l  t axis  as E increases ard then go off  

in to  the  cunplex t plane, one be& the  cunplex conjugate of t he  

other. (We shall call these the  right-hand branches.) 

renrain 5 =i/3 
C) memotsat t =  e 

canplst as E increases from 0. (We shall call these the  left-hand 

branches. 1 

For E very large, we 

In the fcmner case, t + -. 
see frarn (8.7) tkt either t + 0 or 

t2 + -F/E so t approaches zero along 

the posit ive or negative imaginary axis. 

t3 + -E, so t approaches infinity along the  l i nes  of argument 60°, 

a800 or 300O. 

In  the latter case, 

TQ fL.? the  a c t ! !  b ~ a t b ~  ~f these ,+ts fcp f;tp+&ue~ af 
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Fig. 7. 

P l o t s  of D ( t )  def ined  by (8.7) vs t for real t and 

var ious  va lues  of F. ( I n  the F = 0.5 case, the  o rd l -  

n a t e  I s  E rather than  D . )  
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E, i .e. ,  the interpolation between the E = 0 and E + m Tesults 

given above, w e  simply i t e r a t e  (8.7) i n  an appmpriate way. 

right-hand branches, we write it in the  form 

For the  

or 

Solving this quadratic equation with A t reated as "known" leads to 

the i t e r a t ion  

which converges very rapidly to the right-hand branches. Similarly, 

or 

The i t e r a t ion  resul t ing fmm solving t h i s  quadratic equation, 

likewise converges rapidly,  but y ie lds  the left-hand branches. 

The results for F = 1 . 0  are shown i n  Fig. 8 ,  where the  properties 

previously c i ted  fo r  E = 0 (indicated with a heavy dot a t  the 

corresponding end of the  t ra jectory)  and E = are evident. Note 

that the tkh) r i g h t  branches have a c o m n  (E = 0) s t a r t i ng  point a t  

t = 1. For smaller values of F, one branch starts a t  1, the other 

a t  d\F \ ; approach each other along the real axis; and then take 
3 -  
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Fig. 8. 

Locus in the complex t plane of the roots of E-D (t)=O, 

with D defined by (8.7). The case F = 1 is illustrated 

here, with E as a parameter along the curves. The four 

heavy dots on the unit circle correspond to E = 0, the 

one at t = 1 being a coalescence of two roots which are 

distinct when F # 1. 
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off f r o m  a point on ( 0 , 1 )  into the complex plane, a s y m p t o t k  to the 

60° lines shown in Fig. 8.  

Having found, for given F, root locii for EQ. (8.7) of the 

sort shown in  Fig. 8 ,  it i s  a simple matter to  map the locii back into 

the  z plane using (8.8).  On examining these, bwever, it is found 

that while the left-hand branches indeed m p  into solutions of (8.51, 

the right-hand branches map instead in to  solutions of (8.5) for the 

other Riemann sheet,  i.e. the one for which (I- i') -+ ( - I )  

In corroboration of t h i s ,  we s b w  in Fig. 9 ,  for several values of 

->la 
0 s  3 --3 Oo, 

F, 

branches in the t plane, together with actual  solutions obtained O W  

the  exact dispersion equation (7.61, but with 

-G(z). Thus, although the right-hand branches lead t o  z b l u e s  

for which&,2))2cis magnificently sa t i s f i ed  for Zc = 0.1, they 

have no bearing on the roots of (7.6). 

content ourselves with the  left-hand branches which, as w e  shall see, 

do not yield a very large value of 

the curves i n  the z plane corresponding to  the  right-hand 

G(z) replaced by 
_-.__- 

It follows that w e  must 

h Z/Zc. 

VI11 C. Illustration of the Rmt-finding Method. ---_- -__ -___ 
In  Fig. 10 ,  we see the  

branches" for the case F = 0.5. 

z-plane image of one of the  "left hand 

We choose as i n i t i a l  contour, C ,  

the  square shown and compute i t s  image under the  mapping 

with E = 2 .  A s  shown in Fig. 11, G(C) encloses the  or igin so C 

encloses a root of G = 0. To f ind  it, we compute, following (2.71, 

(8 .9)  



Fig. 9 .  

Comparison of  exac t  and approximate l o c i i  f o r  r o o t s  

of (7.6) when G i s  replaced by -G. 

show the  roots  obtained us ing  t h e  exac t  from o f  G 

(equat ion  preceedlng ( 7 . 6 ) ) ,  w i t h  var ious  values of 

E. The s o l i d  ( o r ,  i n  t h e  case  F = 1.0, the d o t t e d )  

curve shows t h e  r o o t s  obtained us ing  t h e  R-P form 

(8.5),  1.e. t h e  image, under ( 8 . 8 ) ,  of t h e  r igh t -  

hand branches of  Fig.  8. 

The heavy d o t s  



- 35, - 

Fig. 10. 

Contour, C ,  i n  t h e  z plane. A l s o  shown a r e  t h e  R-P contour 

f o r  t h i s  case ( F  = 0.5) and the value of t h e  roo t  obtained 

us ing  t h i s  square contour in  ( 2 . 6 )  w i t h  f replaced by G ( z )  

from (7.6) and E = 2. 

Fig. 11. 

Map o f  t h e  square c o n t o u r ,  17, under z -+G ( z ) .  T h e  loca-  

t l o n  a n d  value of the r o o t  d s  g i v e n  by (2.6) a r e  a l s o  shown. 
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obtaining t h e  value shown i n  Fig. 11. 

dot i n  Fig. 10.) 

center of a small circle and use (8.9) to obtain a more accurate 

value, z ' 8 ,  as shown in Fig. 12. This "refinement" pmcess can 

be repeated as of ten as desired,  but in fact t h e  convergence is 

extremely rapid (cf Fig. 12). 

(This p i n t  i s  shown as a 

To obtain more accuracy we chose zo as the  

0 

O f  mre in t e re s t  is a sequence of refined root values for 

varying values of E. Having once computed G ( z )  (which m y  

require 1 to  2 minutes) for an arc, l i ke  that i n  Fig.  1 0 ,  which 

contains roots over Sane range of E values, for fixed F, we 

can easily (and quickly!) add F/z2 t o  generate H; t r ans l a t e  

H by subtracting the  appropriate E value; and then use (8.9) 

(with G = H - E in place of H 1 t o  f ind  the root. Similarly, 

f o r  fixed E we can eas i ly  f ind  roots as a function of F, for 

fixed E. 

V I 1 1  D. Results for the  Ca~plac R o o t s ;  Variztion with M s i t y  and 

h p a g a t i o n  Direction. 

U s i n g  these methods, we find for t h e  t w  complex m t s  identified 

in V I 1 1  A. the  behavior shown i n  Figs. 13  and 1 4  f o r  several values 

of E and F. As is to  be expected, agrement with the  Rosenbluth- 

Post predictions is better t h e  la rger  

good since Imz is never larger than about 0.3. S h c e  E is 

essent ia l ly  p m p r t i o n a l  t o  the  reciprocal of density,  and F = C de/& 
the  dependance of both R e O a n d  h u o n  density and direct ion of 

propgat ion can be inferred d i r ec t ly  from these figures. 

I X .  Discussion of Results 

h z C ,  but is nowhere very 

a) We note f i r s t  t h a t ,  even for t h e  mdest values of Imz 
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3 b 

Fig .  12.  

I l l u s t r a t i o n  of the r e f i n i n g  process 

I n  ( a ) ,  w e  see  a small c i r c l e  ( r a d i u s  . 0 2 )  w i t h  cen te r  a t  

t h e  approximate root value given i n  F i g .  11. We a l s o  see 

i t s  map, which i s  near ly  c i r c u l a r  and I s  smaller  by a 

f a c t o r  2'lC than the map i n  F i g .  11. The root  value found 

from t h i s  new contour i s  also shown; i t  d i f f e r s  from t h e  

previous value (Fig.  11) by about l?;~. I n  ( b )  w e  see t h e  

r e s u l t  of one more i t e r a t i o n ,  r e s u l t i n g  from a contour,  C, 

which i s  a c i r c l e  of r ad ius  .001 about t h e  z, value given 
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C d 

Fig.  13. 

a )  Exact r o o t s  f o r  x = 5, F = 1, E = ( 0 ,  1, 2, 3, 4, 5, 

6 ,  7, 8, 9 )  and R-P locus ( s o l i d  c ruve) .  

b )  Same as a )  f o r  x = 10; the  exact d i spe r s ion  r e l a t i o n  

gives two r o o t  l o c i i ,  one shown d o t t e d  (E = 0, 1, 2, 

3, 4, 5)  and the  o t h e r  label led curve 1. Again, the 

R-P l i m i t  i s  shown. On both 1 and 2, the  poin t  w i t h  

largest R e  z corresponds t o  E = 0.  
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c )  Same a s  b ) ,  f o r  F = .5. 

E = ( 0 ,  1, 2, 3, 4, 5 ) .  On t h e  le f t -hand  branch, 

E = (0, 1, 2, 3, 4, 5, 6, 7 ) .  I n  both cases ,  

E = 0 I s  the poin t  with largest R e  z. The R-P 

l i m i t  i s  shown f o r  comparison. 

On t h e  right-hand branch. 

d )  Same a s  c ) ,  f o r  F = 0. For the right-hand branch, 

E = 0, 1, 2, 3, 4; f o r  t h e  lef t -hand branch, E = 0, 

.5, 1, 2, 3. I n  b o t h  cases ,  E = 0 i s  a t  the top  of 

the curve.  

r .  

e f 

Var ia t ion  of  r o o t s  wi th  F f o r  f ixed  E = 0. 

from 0 t o  1, the  right-hand po in t s  corresponding t o  

e )  F ranges 

F = 1. 

f )  Same as e ) f o r  E = 1. 

dots. ) 

( E  = 0 p o i n t s  are shown as l i g h t  
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b a 

C 

Fig. 14. 

Results for the case x = 20. 

a) Q ( 2 )  vs z f o r  real z, O L z 5 1 .  Each of the six 

minima corresponds to a branch In the complex z plane. 

Branches with highest Re z f o r  F = 1, O S E i l O .  In 

both cases, E = 0 corresponds to the highest Re z. 

Same as b) with R-P limit shown for comparison. 

b) 

c) 
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which w e  have found, the  arguments of t he  p l a m  dispersion functions, 

Z and Z’ ,  in (6.3) sa t i s fy  

f o r  t he  range of e we have used 

for TA not too large, e.g. -TA - I 
Landau damping effects is jus t i f ied .  

( 0 < cos?@ c 8 ) and 

. n u s ,  our neglect of ion 

b) It i s  clear that the  critical parameter involved in t h e  

approach to  the 

to  the wave length. 

agreement between the  exact and 

good, and since the  latter have maximum Imz of a few tenths ,  

R-P limit is j u s t  the  ratio of ion Larmr radius 

Even for 2;‘ = k w,, = \O 
R-P m o t s  i s  only indifferent ly  

, t h e  

the  asymptotic regime r m ’ t / - t ,  >> I apparently 

requires kRci of order 30 o r  mre. 

c) For the  range of x considered here ( 3 s  x S 101, t he  

exact dispersion equation (7 .6 )  has solutions f o r  purely perpendic- 

ular propagation (F = 0) with Imw ampamble t o  that found 

for F = 1, even t b u g h  the R-P l i m i t  predicts that Irrw goes 

t o  z e m  with F. 

it is clear a p r i o r i  that this latter consequence of the  R-P 

dispersion re la t ion  is not reliable.) As w e  m v e  away s l igh t ly  

fmn p~rely W i c u l a r  pmpagation ( F = o 1, t he  

g r w t h  r a t e  increases mewhat and then falls o f f .  

(Since the  R-P l i m i t  is valid only f o r  Imw >> wci, 

d)  While increasing kRci w i l l ,  as noted, eventually bring 

us to t h e  R-P regime, increasing the  plasma density (decreasing E) 

for fixed kRci w i l l  mt. For snail k R i  <lo, t he  wave is in 



resonance w i t n  a d i s c r e t e  harmonic of the  ion cyclotron motion, 

t h e  i n s t a b i l i t y  drawing its energy from t h e  anisotropy of t h e  ion 

d i s t r i b u t i o n  function, and the 

treats Rci as i n f i n i t e ,  is  a poor approximation. 

2-P l i m i t ,  which e s s e n t i a l l y  

Inves t iga t ion  of t h e  convective a spec t s  of t h i s  i n s t a b i l i t y  

and t h e  problem of spatial growth are under way. 



A P P E N D I X  I 

For reference,  we provide a l ist  o f  I& (x )  f o r  

x = 10, where 

The Besae l  funct ions required were computed by using the 

recursion r e l a t i o n  

( A . I . 2 )  

To avoid loaa of  aocuracy the process  was I n i t i a t e d  at  

large n and ( A . I . 2 )  was used t o  work down t o  n - 0. 
large I n i t i a l  n .L N, an arbitrary p o o i t i v e  number (VN) 

was chosen and a related set of numbers vN-j (XI) vN-2(x)) ,,, , 
vo (2) oomputed from ( A . I . 2 ) .  The Bessel Functions were 

For 

then obtained from the normalizat ion 

The values of (x) are given I n  Tables A . 1  and A . 2 .  



- 43 - 

For larger and l a r g e r  values of x the dominant terms in t h e  

sum i n  (7 .6)  occur a t  larger and larger n (n  z XI. 
asymptotically for large n 

We no te  that 

( A . I . 4 )  

independent of n .  This i s  to be compared w i t h  Ll0 (10) .3501. 

We also l is t  t h e  c o e f f i c i e n t s  

K n = 2J n n  J ' n > O  

K = J J '  
0 0 0  

N 

needed for t h e  subtracted form ( 8 . A) of G .  
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T a b l e  A . l .  L i s t  o f  Ln ( 1 0 ) 3 2 n J n  (10)  Jn’ (10)  f o r  

n = 0 t o  12. 

Table A.2. Continued list of  Ln (10);  n = 10 t o  18. 
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Table A . 3 .  List of K, (10) E 2 JnJ; (nrl) vs  n. 
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